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Abstract

This report documents the techniques used to �lter quantities on a stretched grid gen-
eral circulation model. Standard high-latitude �ltering techniques (e.g. using an FFT
to decompose and �lter unstable harmonics at selected latitudes) applied on a stretched
grid are shown to produce signi�cant distortions of the prognostic state when used
to control instabilities near the pole. A new �ltering technique is developed which
accurately accounts for the non-uniform grid by computing the eigenvectors and eigen-
frequencies associated with the stretching. A �lter function, constructed to selectively
damp those modes whose associated eigenfrequencies exceed some critical value, is used
to construct a set of grid-spaced weights which are shown to e�ectively �lter without
distortion. Both o�ine and GCM experiments are shown using the new �ltering tech-
nique. Finally, a brief examination is also made on the impact of applying the Shapiro
�lter on the stretched grid.
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1 Introduction

Version 2 of the Aries/GEOS dynamical core (Suarez and Takacs,1995) was developed at

the Goddard Space Flight Center for use in data assimilation and climate prediction appli-

cations. In this paper we present a generalization of this dynamical core that allows for a

non-uniform latitude/longitude (��j , ��i) grid. This capability allows use of the model for

regional data assimilation with the Goddard Earth Observing System (GEOS) Data Assim-

ilation System (DAS) (see Rood, 1996) and for regional prediction studies using the NASA

Seasonal to Interannual Prediction Project's (NSIPP) coupled prediction system. The use

of this dynamical core in conjunction with a non-uniform grid has been demonstrated by

Fox-Rabinovitz et al. (1997) for the Held-Suarez (1994) dynamics benchmark. That work

demonstrated the usefulness of achieving high resolution results over selected regions with

much greater e�ciency than employing high-resolution uniformly over the sphere.

The Aries/GEOS dynamical core relies on two �ltering strategies to ensure stability and

e�ciency. The �rst, high-latitude �ltering, is done to control linear instability due to the

converging meridions near the pole. This �lter selectively damps the tendencies of fastest

modes. Thus, on a uniform grid, the �lter acts near the poles on the smallest scales. The

second technique is the application of the Shapiro (1970) �lter. This �lter is applied globally

to damp small-scale dispersive waves and to prevent computational nonlinear instability

(Phillips, 1959) to occur. This report will examine the properties of these two �ltering

techniques on the stretched grid, and develop a stretched grid convolution �lter applicable

to controlling linear instability in high latitudes.

2 Stretched Grid GEOS GCM

Following the work of Fox-Rabinovitz et al. (1997), the stretched grid dynamical core

was interfaced with the uniform grid physics package of the GEOS General Circulation

Model (GCM). While the ultimate goal will be to perform the physics on the stretched grid

itself, this more conservative approach was used to avoid unforseen problems within the

parameterizations in regions of high resolution. In practice, a copy of the dynamic state

variables (u; v; �; q; ps) are transformed (via cubic interpolation) to the uniform grid to force

the physics packages. The tendencies of the dynamic state variables due to the physics are

then transformed to the dynamics stretched grid to act as external diabatic forcing in the

time integration scheme. As a result, the dynamics state is always updated and preserved

on the stretched grid.

The generation of the stretched grid used for this study employs a cosine mapping function

to smoothly create grid increments which vary with wavenumber 1 in the longitudinal

direction, and increase to a maximum at the farthest pole in the latitudinal direction.

These longitude and latitude grid increments are shown in Fig. 1. For this study, the
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uniform grid resolution is de�ned by a 2.5�x2.0� lon-lat grid (144x91 points). These points

are re-distributed in longitude and latitude so as to produce uniform 1.0�x1.0� resolution

over the eastern United States (� 28N-48N, 100W-70W). Figure 2 shows the resulting 2-

dimensional grid structure over the globe. Note that in the coarsest region (the South-East

quadrant) an e�ective resolution of � 5�x4� is used.

Starting from an arbitrary, uniform grid January simulation, initial conditions were trans-

formed and balanced on the stretched grid to begin stretched grid forecasts. The top panel

of Fig. 3 shows the initial zonal mean temperature distribution and the day 5 temperature

change from the intitial condition. During this 5-day forecast, a stratospheric warming

event has taken place (between day 4 and 5) which is associated with strong cross-polar


ow. The bottom panel shows the temperature change and day 5 zonal wind at 0.2 mb

from latitudes 50N to 90N (longitude 0 at bottom). We see that near the poles in the region

of highest longitudinal resolution, computational small scale features have developed. This

occurs even though the timestep chosen for the integration was adequately reduced to re
ect

the increased resolution in the area of interest. It was noted in Fox-Rabinovitz et al. (1997)

that, even for the simple-physics Held-Suarez test, excessive polar noise developed when

total stretching factors (��max
��min

) became large (� 16). In those cases, ad hoc strengthening

of the polar �lters was required. It is clear from these results that, while the standard polar

�ltering technique is e�ective in preventing linear instability in many cases, it is not robust

enough for use on the stretched grid for general applications.

3 Uniform Grid High-Latitude Filter

To understand why the standard high-latitude �ltering technique is not adequate when using

the stretched grid, we must �rst review the technique employed on the uniform grid. As

pointed out in Suarez and Takacs (1995), polar Fourier �lters in the Aries/GEOS dynamical

core are applied to the tendencies of all prognostic variables. This is done to avoid linear

computational instability due to the convergence of the meridians near the poles. The

�lter acts poleward of a critical latitude �c (nominally 45�), and its strength is gradually

increased toward the pole by increasing the number of a�ected zonal wavenumbers and the

amount by which they are damped.

Consider the linearized, one-dimensional shallow water equations with no mean 
ow given

by:

@u

@t
= �

g

a cos�

@h

@�
; (1)

@h

@t
= �

H

a cos�

@u

@�
: (2)
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Discretizing in space on a staggered C-grid, we may write

@ui+ 1

2

@t
= �

g

a cos�

�
hi+1 � hi

��

�
; (3)

@hi

@t
= �

H

a cos�

 
ui+ 1

2

� ui� 1

2

��

!
: (4)

Here, �� = 2�
IM

and IM is the zonal dimension. Assuming wave solutions of the form:

ui+ 1

2

(t) = ûe�(k(i+
1

2
)����t) ; (5)

hi(t) = ĥe�(ki����t) ; (6)

where i denotes the grid-space location in longitude and � =
p
�1, it can be shown that the

frequency associated with each harmonic component k is given by

� = � 2
p
gH

a cos���
sin(k

��

2
) : (7)

We see that the frequency increases as a function of wavenumber and as we approach the

pole.

Using the leapfrog time scheme, linear stability requires that

��t � 1: (8)

This forces restrictions on the timestep governed by

�t �
1

2

a cos���p
gH

1

sin(k��
2 )

: (9)

To eliminate the requirement that the timestep goes to zero as we approach the pole, a

wavenumber-dependent �lter, Fk, is applied to the time tendencies of the prognostic �elds

resulting in a modi�ed frequency function given by

� = � Fk

2
p
gH

a cos���
sin(k

��

2
) : (10)

By requiring that the frequency be no larger than �MAX (e.g., the un�ltered value associated

with the shortest wavelength at the critical latitude �c), the functional form of Fk may be

obtained:

Fk = min

"
1;

 
cos�

cos�c

1

sin(k��
2 )

!n#
: (11)
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Here, n is an arbitrary factor used by Suarez and Takacs (1995) to increase the strength of

the �lter. While not needed for these linear studies, it has proven bene�cial to use n = 2 for

the non-linear uniform grid GCM. Unless otherwise stated, results shown here were made

using n = 1. It is important to remember that applying the �lter in this manner simply

slows down each harmonic component by an amount which produces linear stability. More

precisely, the computational propogation speed of each zonal harmonic is adjusted to keep

its transport to no more than 1 �� per timestep. The �lter has no impact on the magnitude

nor energy of the harmonic.

Figures 4 and 5 show the �lter function at latitudes 85N and 60N, respectively. For these

results, the zonal dimension was set to IM=144 (corresponding to a 2:5� resolution). Near

the pole (85N) the �lter strength is quite strong with only wavenumbers 0-5 remaining

untouched. However, away from the pole (60N) the �lter is much weaker with only moderate

damping even at the smallest scales. Also shown in Figs. 4 and 5 are the equivalent

grid-space weighting coe�cients at various longitudes obtained through convolution of the

spectral �lter functions. Since the grid is uniform, the weighting stencil is identical for each

longitude location. For the strong spectral �lter function near the pole, the convolution

weights are quite broad in longitude and have a peak amplitude which is relatively small

(0.3). Away from the pole where the �lter strength is weak, the convolution weights resemble

that of a Delta function whose amplitude is near 1.0 at the grid-point location and almost

0.0 elsewhere. The breadth of the convolution weights are thus intimately connected to the

physical scale of the waves being �ltered.

To illustrate the e�ect of �ltering, a set of initial conditions consisting of the single harmonics

1, 3, 5, and 7 (see Fig. 6) is used. To benchmark this test, the integration is �rst run

without �lters by using a su�ciently small timestep which is linearly stable, Fig. 7. These

single harmonics simply oscillate in time with no translational motion. The test is then

repeated using a timestep comparable to that used for GCM simulations. Without �ltering,

instability occurs within a few iterations (not shown). Figure 8 shows the results from the

uniform grid using the standard FFT polar �lter described above. The �ltering associated

with latitude 85N was used for these runs. With tendency �ltering, the solutions look quite

similar to the non-�ltered case with no discernable instabilities. Figure 9 compares the

�ltered and non-�ltered solutions at longitude 0�, with additional wavenumbers 9 and 12

also shown. As the wavenumber increases, the frequency is increasingly slowed compared

with the non-�ltered run. Also, the frequencies for wavenumbers 7, 9, and 12 are identical

for the �ltered run since they are forced to be no greater than the maximum allowed value.

However, the magnitude of the oscillation remains untouched, with no distortion of the

waveform.
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The experiment is then repeated using the stretched grid. The uniform 2.5� grid is stretched

to 1� between longitudes 75E and 105E, Fig. 10, with initial conditions shown in Fig. 11.

Figure 12 shows the results for the stretched grid using a su�ciently small timestep to

ensure stability without �ltering. The stretched grid solution is very similar to the uniform-

grid solution, creating negligable distortion due to the stretching. The experiment is again

repeated using a larger timestep comparable to that used for GCM simulations and thus

requiring tendency �ltering, Fig. 13. It is clear that the use of the standard FFT �lter

has created signi�cant distortions of the pure waveforms and has a�ected the solution at

all longitudes. In addition, signi�cant small-scale features have been created even though

linear stability has been achieved. Arbitrarily increasing the strength of the �lter to n = 2

creates even further distortions, Fig. 14. A snapshot of the solution at 3 hours is shown in

Fig. 15 clearly demonstrating the inability of the standard FFT �lter to adequately control

noise and prevent distortions on the stretched grid.

4 Stretched Grid High-Latitude Filter

Since the standard �ltering technique is done in spectral space, it is clear that the functions

upon which stability is based (the trigonometric zonal harmonics) must have the same

relevance on the stretched grid for the �ltering technique to be valid. Figure 16 depicts the

single harmonic wavenumber 3 on the uniform grid (top panel) and on the stretched grid

(center panel). Here, the term \wavenumber 3" is used to describe a �eld whose structure

is repeated three times in the longitudinal direction. Using this de�nition we see that for

each zonal harmonic k there is an associated geophysical scale whose wavelength Lk is given

by:

Lk =
2�a cos�

k
: (12)

This physically-based wavelength is independent of any �nite-resolution grid used to con-

struct the �eld. Assuming this physically-based wave propogates uniformly in the zonal

direction, the �lter strength required to slow it down must clearly be a function of the

local zonal grid increment just as it is a function of latitude (i.e., the required strength to

restrict transport to no more than 1 �� per timestep would need to be greater in an area

of high resolution than in an area of coarse resolution). However, as shown above for the

standard �ltering technique, there is no longitudinal dependence on the �lter strength Fk.

Moreover, since the FFT implicitly assumes a uniform grid distribution, the FFT interprets

this wavenumber 3 example as a �eld which is made up of both longer and shorter wave

components (Fig. 16, bottom panel). The varying strengths of the �lter as de�ned by (11)

for these wavenumbers would be misapplied if the intent was to �lter the geophysical scale

associated with wavenumber 3.
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The top panel of Figure 17 shows the FFT harmonic decomposition of the wavenumber 3

example for both the uniform grid and the stretched grid. Interestingly, the wavenumber 3

harmonic is almost completely missing from the stretched grid interpretation. Instead we

see a spread of harmonics to either side of the actual input wavenumber. The bottom panel

of Fig. 17 repeats this analysis for each wavenumber from 0 to IM/2. Each single harmonic

wave component is projected onto the strethed grid, and then used as input to the FFT

analysis. As before, each component is interpreted as having both longer waves and shorter

waves, with little energy in the actual wavenumber used as input.

Figure 18 examines the convolution weights obtained from the standard FFT �lter but

applied on the stretched grid. The top panel, as before, shows the spectral �lter function

independent of longitude. The bottom panel of Fig. 18 shows the convolution weights

plotted on the stretched grid. We see that the peak amplitude of the weights is constant

in longitude. However, in the �ne-resolution region the convolution weights have narrowed

in longitude while in the coarse-resolution region they have broadened. This implies that

the e�ect of the standard �ltering technique on the stretched grid will be to �lter less in

the �ne-resolution region and �lter more in the coarse-resolution region, exactly opposite to

that required from previous considerations.

It has become clear that to accurately �lter on a stretched grid, we must �rst determine

the stretched grid basis functions upon which the model solutions may be projected. We

again start by writing the discretized linear shallow water equations for the stretched grid:

@ui+ 1

2

@t
= � g

a cos�

0
@hi+1 � hi

��i+ 1

2

1
A ; (13)

@hi

@t
= �

H

a cos�

 
ui+ 1

2

� ui� 1

2

��i

!
: (14)

Here, ��i+ 1

2

is the distance in longitude between mass points, and

��i =
��i+ 1

2

+��i� 1

2

2
: (15)

Using (13) and (14), the wave equation is formed given by:

@2hi

@t2
=

gH

(a cos�)2

2
4 hi+1 � hi

��i��i+ 1

2

� hi � hi�1

��i��i� 1

2

3
5 : (16)

Assuming a solution of the form:

hi(t) = ĥie
���t ; (17)
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we �nd

��2(a cos���)2

gH
ĥi =

0
@ ��2

��i��i+ 1

2

1
A ĥi+1

� 2

0
@ ��2

��i+ 1

2

��i� 1

2

1
A ĥi

+

0
@ ��2

��i��i� 1

2

1
A ĥi�1 ; (18)

where �� = 2�
IM
. Note that for the uniform grid (��i = ��) the weights used in (18) simply

become 1, -2, 1. De�ning:

ri =
��2

��i+ 1

2

��i� 1

2

; (19)

r+i =
��2

��i��i+ 1

2

; (20)

r�i =
��2

��i��i� 1

2

; (21)

we may write (18) in matrix form as:

0
BBBBBBB@

�2r1 r+1 r�1
r�2 �2r2 r+2

r�3
. . .

. . .

. . . �2rIM-1 r+
IM-1

r+
IM

r�
IM

�2rIM

1
CCCCCCCA

ĥ = � ĥ ; (22)

where � is the eigenvalue associated with the eigenfrequency �:

� = �
�2(a cos���)2

gH
: (23)

From (22) and (23), we may compute the eigenvalues (or eigenfrequencies) and correspond-

ing eigenvectors associated with the stretched grid (see Appendix for detail). Figure 19

shows the eigenvalues computed by solving (22) for both the uniform grid and the stretched

grid, in addition to the analytic uniform grid solution associated with (7). Here we have

ordered the eigenvalues by magnitude. For the uniform grid, the analytic and numerical

solutions are indistinguishable. For the stretched grid, we see a signi�cant increase in the

magnitude of the eigenvalues associated with the highest mode index (smallest scales).
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The eigenvectors associated with a sampling of modes are shown in Fig. 20 for the uniform

grid and Fig. 21 for the stretched grid. The uniform grid solutions are simply discretized

sines and cosines, analogous to the analytic solution. The eigenvectors for the stretched grid

are similar for the low-index (slow) modes. However, as the mode index (or eigenfrequency)

increases the structure of the eigenvector is con�ned to smaller and smaller regions. For the

highest eigenfrequency, the eigenvector is totally concentrated in the �nest resolution area.

By ordering the eigenvalues and associated eigenvectors in this manner, a �lter may be

constructed to selectively damp those modes whose associated eigenfrequencies are faster

than some critical value. Using (23) we see that

� = �
j�j

1

2

p
gH

a cos���
: (24)

As in the uniform grid case, the maximum frequency allowed will be de�ned as the un�ltered

frequency associated with the shortest wave at the critical latitude �c:

�MAX =
2
p
gH

a cos�c��min
: (25)

Requiring that the �ltered frequency be no faster than the maximum frequency allowed,

F � � �MAX ; (26)

the �lter function for the stretched grid becomes:

F = min

"
1;

2��

j�j
1

2��min

cos�

cos�c

#
: (27)

4.1 Convolution Filter

To construct the stretched grid convolution �lter, consider for example the height �eld

de�ned by a vector array h constructed from the set of modes found in Section 4:

h =MA ; (28)

where M are the stretched grid modes or eigenvectors and A are the mode projection

amplitudes. The amplitudes may be explicitly obtained by

A =M�1 h : (29)

A new set of amplitudes are now created by multiplying (29) by a diagonal matrix F de�ned

by the convolution �lter function (27):

AF � F A = F M�1 h : (30)
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The reconstructed �ltered �eld, hF , is therefore given by:

hF �M AF = M F M�1| {z }
Weights in Grid Space

h : (31)

The weights obtained in grid space are analogous to the weights obtained through convolu-

tion of the standard FFT for the uniform grid. Through convolution we may now examine

in spectral space the response of these weights as a function of longitude. The top panel

of Fig. 22 shows the spectral response of the stretched grid convolution �lter for various

longitude locations, while the bottom panel shows the grid space weighting coe�cients. We

see that the amplitude of the coe�cients is now a function of longitude while the breadth of

the stencil is constant. This is exactly opposite to that obtained by the use of the standard

FFT �lter applied to the stretched grid, with the impact being that the strongest �ltering

now takes place in the region of highest resolution. The results from using the stretched grid

convolution �lter are shown in Fig. 23. The stretched grid convolution �lter successfully

prevents linear instability with no distortion of the waveforms nor generation of additional

small scale features.

4.2 GEOS GCM Results

Having seen the e�ectiveness of using the stretched grid convolution �lter in simple o�-line,

gravity wave test cases, we now proceed to analyze its performance within the GEOS GCM.

For this test, the forecast experiment described in Section 2 is repeated by replacing the

standard FFT polar �ltering technique with that of the stretched grid convolution �lter.

Figure 24 once again shows the initial zonal mean temperature distribution and the day

5 temperature change, as well as the 0.2 mb day 5 temperature change and zonal wind

�elds. Compared with Fig. 3, the stratospheric warming event is again simulated but with

no evidence of small-scale noise near the polar, high-resolution region. It should be noted

that the noise generated with the standard �ltering technique was primarily evident at

high stratospheric altitudes where the wind �eld is particularly strong. At lower levels the

standard �lter and the stretched grid convolution �lter produce very similar results. Figure

25 shows the sea-level pressure and 300-mb height �elds at day 5 for the two simulations.

The two solutions are virtually identical with no evidence of noise in either case.

4.3 Uniform Grid Interpretation

While the preceeding sections derived exactly the proper �lter function for the linearized

shallow water equations on a stretched grid, it is possible to approximate this solution

through a uniform grid interpretation. Recall from Section 3 that the �lter function derived
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for the uniform grid for n = 1 was given by

Fk = min

"
1;

 
cos�

cos�c

1

sin(k��
2 )

!#
; (32)

for k = 0; IM
2
. This may be rewritten as:

Fi;k0 = min

"
1;

 
a cos���i

a cos�c��min

1

sin(k0��i
2 )

!#
; (33)

for

k0 = 0;
Ni

2
; (34)

Ni =
2�

��i

: (35)

We see that for the uniform grid, ��i =
2�
IM
, (32) and (33) are identical. However, for the

stretched grid we de�ne Ni at each longitude location as the number of points a uniform

grid would have assuming a uniform resolution of ��i. This will produce a uniform grid

�lter function which, through convolution, may be represented by the grid-space weight-

ing coe�cients. The stretched grid weighting stencil may then be constructed by simply

interpolating the uniform grid stencil to the stretched grid locations.

The top panel of Fig. 26 shows the grid-space weighting coe�cients obtained using this

empirical method, while the bottom panel shows the di�erences compared with the eigen-

value method. The empirical method produces coe�cients very similar to the eigenvalue

method, with the resulting simulation shown in Fig. 27. This implies that the stretched

grid convolution �lter developed in Section 4.1 acts to treat each local ��i as if it were

global, and constructs a �lter function based on a uniform grid of that resolution. Interest-

ingly the minor di�erences which are obtained using this empirical method are ultimately

pathological giving rise to instabilities as shown in Fig. 28 after 30 hours of simulation.

However, as will be seen in the next section, this technique can be useful to analyze the

impact of arbitrary uniform grid �lter response functions applied to a stretched grid.

5 Global Shapiro Filter

As previously noted, the uniform grid GEOS GCM also employs the Shapiro (1970) �lter

to globally damp small-scale dispersive waves. This �lter also prevents computational non-

linear instability (Phillips, 1959) to occur. The Shapiro �lter is applied as a tendency to

the winds, potential temperature, and tracers (including speci�c humidity). Thus, only a

fraction of the full Shapiro �lter is incorporated at each time step. This is done to reduce

dynamical imbalances and diabatic responses caused by the �lter.
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The Shapiro �lter tendency for a quantity q is de�ned by

�
@q

@t

�
SF

=
qF � q

�
; (36)

Here q and qF are the un�ltered and �ltered quantities, and � is an adjustable timescale. For

the uniform grid GEOS GCM, � is set to 1.5 hours which e�ectively removes the smallest

two-grid interval wave in approximately 6 hours. The �lter is applied separately in the

longitudinal and latitudinal direction using

qFi;j = [1� (F 2
�)

n] [1� (F 2
�)

n] qi;j ; (37)

where

F 2
�(qi;j) = � 1

4
(qi+1;j � 2qi;j + qi�1;j) ;

F 2
�(qi;j) = �

1

4
(qi;j+1 � 2qi;j + qi;j�1) ;

(38)

and n is the Shapiro �lter order/2. At 2.5�x2� resolution the GEOS GCM uses an 8th-order

(n=4) �lter. Lower-order �ltering corresponds to stronger damping.

We may examine the Shapiro �lter response function in one dimension by assuming a wave

solution de�ned by

qi = q̂k e�ki�� : (39)

Doing so we �nd

q̂Fk = 1� sin2n(k
��

2
) : (40)

The left-hand column of Fig. 29 shows the frequency response for the 8th-order �lter on a

2.5� uniform resolution grid as well as the grid space weights at selected longitudes obtained

through convolution. We see that the grid space averaging is very local (only 9 grid points)

and produces a sharp delineation between the small scales which are heavily �ltered and

the longest scales which are virtually untouched. The center column of Fig. 29 shows the

response of the standard technique described above but applied to the stretched grid. In

this case the basic local stencil is simply used without concern for the non-uniform mesh.

Due to the success of the uniform grid interpretation in approximating the convolution

weights obtained by the eigenvalue method for the stretched grid high-latitude �lter, it is

useful to employ this technique to estimate the proper stretched grid convolution weights

derived from the uniform grid Shapiro �lter frequency response. The right-hand panel of

Fig. 29 shows the results from assuming that each local ��i was globally uniform. The

convolution weights associated with the Shapiro �lter response for each implied uniform

resolution were then interpolated to the actual stretched grid locations. The frequency

response associated with these empirically derived coe�cients was then plotted for selected
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longitude locations. Due to the very local nature of the Shapiro �lter and the �lter response's

non-dependency on critical wavelengths, very little impact is seen as a result of the non-

uniform grid. This is signi�cantly di�erent than the impact seen for the high-latitude �lter

case, Fig. 22, where longitudinal locality greatly in
uenced �lter strength. As a result of this

analysis in addition to empirical evidence from numerous stretched grid GCM simulations

and the greater e�ciency of the standard algorithm, no obvious advantage is realized by

using the (empirical) eigenvalue method for the global Shapiro �lter.

6 Conclusion

In this report the �ltering characteristics of a stretched grid GCM have been reviewed. It

was shown that using the standard FFT polar �ltering technique, as performed by Fox-

Rabinovitz et al. (1997) for the stretched grid Held-Suarez dynamics benchmark, com-

putational small-scale noise is generated near the poles in the region of high longitudinal

resolution. While this noise is associated with high wind speeds in the stratospheric do-

main, Fox-Rabinovitz et al. found similar problems when total stretching factors were large

(� 16). For those cases, ad hoc strengthening of the �lter coe�cients were used to control

stability.

A review of the standard high-latitude �ltering procedure was made and an examination of

the physical scales associated with the �lter were analyzed on both the uniform grid and

the stretched grid. It was shown that the implicit assumption of a uniform grid within

the FFT algorithm results in a misrepresentation of the zonal harmonic composition of the

input �eld. Standard �lter strengths which are derived from uniform grid considerations

and stability analyses are thus misapplied to the stretched grid harmonic decomposition,

resulting in weaker �ltering within the high resolution region and stronger �ltering in the

coarse resolution region. This is opposite to the requirement of stronger �ltering in areas

of high resolution.

A new �ltering technique has been developed which accurately accounts for the non-uniform

grid by computing the eigenvectors and eigenfrequencies associated with the stretching. It

is shown that the convolution of the required damping function within mode space yields

grid-spaced weights which can be e�ciently used to perform the �ltering without distortion.

O�ine tests showed that the stretched grid convolution �lter correctly �ltered more in the

high resolution region and less in the coarse resolution region. Online GCM experiments

further showed that computational small-scale noise was no longer generated in the region of

highest longitudinal resolution near the poles. Away from high latitudes, no adverse e�ects

from using the stretched grid convolution �lter were seen. In the limit that the stretched

grid becomes uniform, this technique reduces to the standard uniform grid �lter.

In addition to the complete eigenvalue/eigenvector solution, an empirical method was de-
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veloped which treats each local ��i as if it were global. The convolution weights associated

with the �lter frequency response for the implied uniform resolution are then interpolated

to the actual stretched grid locations. This empirical estimation of the convolution weights

for a stretched grid was used to analyze the impact of applying the Shapiro �lter on the

stretched grid. It was shown that due to the Shapiro �lter's very local grid stencil (9 points

for the 8th-order �lter), the standard application of the Shaprio �lter produced very small

di�erences compared with the (empirical) eigenvector method. Due to the greater e�-

ciency of the standard algorithm, no obvious advantage is realized by using the (empirical)

eigenvector method for global �ltering.

Acknowledgements

This work was supported by the Global Atmospheric Modeling and Analysis Program,

NASA/O�ce of Earth Science.

13



Appendix

Linear Algebra Aspects
of the Stretched Grid Convolution Filter

The stretched grid convolution �lter requires the eigenvalues and eigenvectors of a non-

symmetric matrix (which we de�ne here as R) from (22). The matrix R is a tridiagonal

matrix with the addition of the two corner elements r+
IM

and r�1 . It has several interesting

properties. From (19), (20), and (21) it is clear that all row sums are zero. That is,

8i : �2ri + r+i + r�i = 0, or in matrix form,

Rc = 0 (41)

where c is a vector of constant elements c = (c; c; : : : ; c)T . In other words R is singular.

From the same de�nitions (19), (20), and (21) it is easily shown the product of the ratios
r
+

i

r
�

i

is unity:

nY
i=1

r+i

r�i
= 1 (42)

since every ��i, ��i+ 1

2

and ��i� 1

2

appears in both the numerator and the denominator.

If (19), (20), and (21) are all multiplied through by ��i, or equivalently, (22) is multiplied

on the left by

� =

2
66664
��1

��2
. . .

��IM

3
77775 (43)

a generalized eigenvalue problem containing a symmetric left-hand side R̂ = �R side can

be obtained:

R̂ ĥ = � � ĥ : (44)

It would therefore be straightforward to use a generalized eigen-solver for symmetric ma-

trices to solve the eigenvalue problem. But the problem can be further simpli�ed. Since
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both R̂ and � are real and symmetric, it is clear that all � are real. This means that R is

symmetrizable, that is, a similarity transform can be applied to R to create a symmetric

matrix with the same eigenvalues:

Z R Z�1 = S = ST : (45)

In order to �nd Z by construction, consider the diagonal matrix

Z =

2
66664

�1
�2

. . .

�IM

3
77775 : (46)

Clearly, Z�1 is also a diagonal matrix with 1
�i
on the diagonal.1 If the similarity transform

is applied using this Z, the result is a matrix with the same structure as R:

S = Z R Z�1 =

2
666666664

�2r1 �1
�2
r+1

�1
�IM

r�1
�2
�1
r�2 �2r2 �2

�3
r+2

�3
�2
r�3

. . .
. . .

. . . �2rIM�1 �IM�1

�IM
r+
IM�1

�IM
�1

r+
IM

�IM
�IM�1

r�
IM

�2rIM

3
777777775

: (47)

This matrix is symmetric if, and only if, the elements r+i and r�i are non-zero, and the

following conditions are satis�ed:

�i+1
2 =

r+i

r�i+1
�i
2 : (48)

The conditions (48) wrap around (i.e., �1
2 =

r
+

IM

r
�

1

�IM) and can only be satis�ed if

r+1 r
+

2 � � �r+IM
r�1 r

�

2 � � �r
�

IM

= 1 : (49)

From (42) we already know this to be the case for the matrixR. One degree of freedom is left

to set, for example, �1 = 1. Thus, with a simple similarity transform, a symmetric matrix

1It is assumed that the �i are non-zero.
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can be obtained which is more e�cient to factorize2 than the original R. It also improves

the algorithm by indicating that the eigenvalues are necessarily real | a non-symmetric

eigensolver might return very small imaginary components due to round-o� errors. Finally,

the eigen-decomposition of a symmetric matrix yields orthogonal eigenvectors Q,

QT S Q = diag(�1; �2; : : : ; �IM) (50)

which can be a considerable advantage.

Equation (41) indicates that R has a zero eigenvalue, i.e., �1 = 0. Although most eigen-

solvers can handle such a case, it is conceivable that 
oating point errors can result. In

order to further stabilize the algorithm, it may be worthwhile to remove the zero eigenvalue

by the following technique. The eigenvector to the zero eigenvalue of R is clearly c, a vector

of constants, as shown in (41). The equation

R c = Z�1 S Zc = 0 (51)

indicates that y = Zc is the eigenvector of S corresponding to its zero eigenvalue. Assuming

a normalized y it is possible to create an orthonormal basis,

Y =
h
y ~Y

i
(52)

where ~Y can be constructed iteratively from Gram-Schmidt orthogonalization. Thus a

second similarity transformation can be applied on S using ~Y:

YT S Y =

"
yT

~Y

#
[S]
h
y ~Y

i
(53)

=

"
yTSy yTS ~Y
~YTSy ~YTS ~Y

#
(54)

=

"
0 0T

0 ~S

#
: (55)

Note, for example, that yTS ~Y = yTST ~Y = (Sy)T ~Y = 0T . This similarity transform en-

sures that ~S is also symmetric and contains all the eigenvalues of S except the zero eigenvalue

corresponding to eigenvector y. The symmetric matrix ~S has the eigen-decomposition,

2For example, with the LAPACK routine dsyev.
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~QT ~S ~Q = diag(�2; : : :�IM) : (56)

From (53) and (56) it is straightforward to show that the eigenvectors of the non-zero3

eigenvalues are ~Y ~Q. Thus the full set of eigenvectors of S is:

Q =
h
y ~Y ~Q

i
: (57)

It is now possible to specify the eigen-decomposition of R in terms of all the components

of the fully stabilized eigen-solver:

M�1RM = diag(0; �2; : : :�IM) (58)

= QTSQ (59)

=

"
yT

~QT ~YT

#
Z�1RZ

h
y ~Y ~Q

i
: (60)

Thus, with the eigenvectors ~Q of ~S, the normalized eigenvector y, the set of constructed

orthonormal vectors ~Y, and the diagonal matrix Z, it is possible to recreate the eigenvectors

M of R:

M = Z
h
y ~Y ~Q

i
(61)

which are required in the stretched grid convolution �lter.

3The proof is omitted here that all other eigenvalues of S are non-zero.
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Figure 1: Longitude and Latitude Grid Increments using stretched grid.
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Figure 2: Stretched grid structure used for GCM experiments.
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Figure 3: Initial temperature and Day 5 temperature change (top panel), and 0.2 mb

temperature change and zonal wind �eld (bottom panel) using the standard FFT �lter on

the stretched grid.
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Figure 4: Filter function and grid-space weighting coe�cients at 85N for uniform grid.
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Figure 5: Filter function and grid-space weighting coe�cients at 60N for uniform grid.
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Figure 6: Initial conditions for gravity-wave experiment on a uniform grid.
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Figure 7: Timeseries of single harmonics on a uniform grid using a linearly stable timestep

and no �ltering.
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Figure 8: Timeseries of single harmonics on a uniform grid using an unstable timestep with

FFT �ltering.
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Figure 9: Timeseries at longitude 0 of single harmonics on a uniform grid comparing �ltered

(thick) and non-�ltered (thin) runs.
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Figure 10: A comparison of the uniform and stretched-grid zonal increments.
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Figure 11: Initial conditions for gravity-wave experiment on a stretched grid.
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Figure 12: Timeseries of single harmonics on a stretched grid using a linearly stable timestep

and no �ltering.
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Figure 13: Timeseries of single harmonics on a stretched grid using an unstable timestep

with FFT �ltering.
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Figure 14: Timeseries of single harmonics on a stretched grid using the FFT �lter squared.
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Figure 15: Single harmonics at time = 3 hrs using the standard FFT �lter and FFT �lter

squared on the stretched grid.
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Figure 16: Wavenumber 3 as seen by Uniform Grid, Stretched Grid, and Stretched Grid

interpretted as Uniform Grid.
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Figure 17: Spectral decomposition of single harmonic waves as interpretted by FFT on the

Stretched Grid.
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Figure 18: Filter function and grid-space weighting coe�cients using standard FFT on a

stretched grid.
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Figure 19: Eigenvalues associated with the uniform and stretched grid.
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Figure 20: Eigenvectors associated with the uniform grid.
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Figure 21: Eigenvectors associated with the stretched grid.
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Figure 22: Filter function and grid-space weighting coe�cients using the convolution �lter

on a stretched grid.
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Figure 23: Timeseries of single harmonics on a stretched grid using an unstable timestep

with convolution �ltering.
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Figure 24: Initial temperature and Day 5 temperature change (top panel), and 0.2 mb

temperature change and zonal wind �eld (bottom panel) using the convolution �lter on the

stretched grid.
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Figure 25: Day 5 sea-level pressure and 300-mb height �elds for the standard FFT �lter

and the convolution �lter.
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Figure 26: Grid-space weighting coe�cients using the empirical method, and compared

with the eigenvalue method.
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Figure 27: Timeseries of single harmonics on a stretched grid with weights obtained using

the empirical method.
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Figure 28: Single harmonics at time = 30 hrs comparing the eigenvalue and empirial meth-

ods.
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Figure 29: Filter function and grid space weights for an 8th-order Shapiro �lter on the

uniform and stretched grid.
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